1 1 ¹ 1 са са ing ng phul CALLS CALLS IN THE C LJ LJ LJ 7 г т J LJ LJ L 1 I I I I I I I I I г п الري ولينا البوان والا والا وال **F 1 F 1 F 7** са са са 4а. 1 F 1 L J

Integration of Industry 4.0 in Education Programs of German Universities of Applied Science

Prof. Dr.-Ing. Rainer Würslin

- » The University of Applied Sciences Esslingen
- » The German Education- and Study-System
- » Industry 4.0
- » Education Requirements and Solutions for Industry 4.0

Location

Campuses

City Campus

- Automotive
 Engineering
- » Basic Sciences
- Building Services, Energy and Environmental Engineering
- » Mechanical Engineering
- » Natural Sciences

Hilltop Campus

- » Graduate School
- Information
 Technology
- » Management
- Social Work, Health and Nursing

Göppingen Campus

- » Engineering Management
- » Mechatronics and Electrical Engineering

approx. 2300 students

approx. 2300 students

approx. 1200 students

Presentation Berlin

Study Program in Mechatronics

Hochschule Esslingen University of Applied Sciences

Presentation Berlin

©2013 Hochschule Esslingen – Campus Göppingen – Faculty Mechatronics and Electrical Engineering

ыл гл г са са na na nL J en en en efitet f сэ сэ сэ _Т г т T. ¹. . . . Г г т لاري وليها الرواي وي ولا وي وي و **F 1 F 1 F 1** га га **га** 4**а** – E L J LJL 1 F 1 J L J

The German Education- and Study-System

From Secondary School into the Job

University of Applied Sciences

Presentation Berlin

©2013 Hochschule Esslingen – Campus Göppingen – Faculty Mechatronics and Electrical Engineering

Different Kinds of Universities in Germany

Hochschule Esslingen

University of Applied Sciences

University of Cooperative Education (Duale Hochschule)

- small classes
- fixed timetables
- oriented to practical experience
- students are employees of the companies
- practical training:
 - half the time in company

- degrees:
 - bachelor of engineering
 - master of engineering

University of *Applied Sciences* (Fach-Hochschule)

- small group classes per semester
- fixed timetables
- students starts with practical experience
- theory and practical education
- practical training:
 - labs and projects during the study
 - 1 Sem. industrial internship
 - thesis 6 month in industry
- degrees:
 - bachelor of engineering
 - master of engineering
 - PhD possible in cooperation

University of Sciences (Universität)

- big classes into the first semesters
- liberal structure of study program
- academic education with theoretical emphasis
- practical training:
 - labs during the study
 - 12 weeks industrial internship
- degrees:
 - bachelor of science
 - master of science
 - PhD

Presentation Berlin

© 2013 Hochschule Esslingen – Campus Göppingen – Faculty Mechatronics and Electrical Engineering

Features of the University of Applied Sciences program

- » Focus on Bachelor- and Master Programs of Engineering
- » Professors with industrial experience
- » Additional lecturers from industry
- » Institutes of applied research and Steinbeis-Centers
- » Students starts with industrial experience
- » Students gets international experience
- » Practical internship 100 days in industry
- » Final thesis in industry (6 month)
- » Good job prospects for students

	F 1	r i L	г 1 г	L 1	1 г	1 Г 1	L
L	с л	L J		а.	л с	L.	
	с л		- 1 1		Ë 1	L LJ.	L JA
			u i		i i	r n'' L'J	ц ц
			1 1	гл	1	L P N	ГЛ
			1	L J	L J	L J	L
					г	r n	
					Ц	ы. Б	

Industry 4.0

Hochschule Esslingen

University of Applied Sciences

Presentation Berlin

Some facts to Industry 4.0

» Movement toward

- » Internet of things and services into production
- » Cyber Physical Production Systems (CPS)
- » Smart Factories
- » The goals of production are:
 - » controlled by the product
 - » self-organizing
 - » flexible
- » Obstacles:
 - » increasing number of variants
 - » shorter development- and sales times
 - » Individualisation of products

Cyber Physical Systems (CPS)

Reference IAO

Presentation Berlin

Smart factory: organizes itself

Quelle: VDI / Fraunhofer IAO

Cyber-physical systems (e.g., machinery, equipment)

- have an identity
- communicate with each other and with the surrounding environment
- configure itself
 (Plug and Produce)
- store information

decentralized self-organization

- » Norms and Standards
- » Revolution of ICT in manufacturing an infrastructure for information, production and communication technology
- » Safety and Security
- » Human-machine interaction (HMI)
 - » Operational work organization and job design
 - » Qualification, education and further education
- » Legal Framework
- » Preliminary recommendations for the implementation of dual strategy

ыл гл г са са г na na nL J¹.¹.¹.¹.¹ LJ LJ LJ ₁ г т T. L. 1 I I I I I I I I I I Г г т لاري ولي الجاري وي الجاري وي F 1 F 1 F 1 га га га 4**а** – E 5 4 LJL 1 F 1 1

Education Requirements for Industry 4.0

- » Knowledge topics:
 - » for norms and standards in communication technology
 - » for a new production logistics and production infrastructure
 - » Topics for Safety and Security
 - » Specialists for human-machine interaction
 - » Modeling of technical systems using information technology
 - » interaction between the real and digital world
 - » model-based, mechatronic engineering
 - » adapting development (Delta Engineering) in contrast to full development

- » Augmented Operator
 - » Control and monitoring of manufacturing processes with the help of virtual production systems
 - Influencing production targets (Situational and context-dependent)
 - » Operation of IT-based assistance systems
 - » Remote Maintenance and remote control of production lines

- » companies in future will be education-partners of universities
 - » compressed undergraduate study program
 - + supplemented by business practice
 - + depth studies
 - » Knowledge not only in engineering, also in not technical skills
- » Increasingly interdisciplinary skills are required
- » New approaches to work-related knowledge and skills acquisition
- Development of digital learning techniques and digital Media (e-learning)
- » Demographic change and heterogeneous requirements of learners require new approaches in didactics

Our way: in the faculty mechatronics

Presentation Berlin

Education in Industry 4.0 in the Automation Lab

Hochschule Esslingen University of Applied Sciences

SIEMENS

FESTO

Presentation Berlin © 2013 Hochschule Esslingen – Campus Göppingen – Faculty Mechatronics and Electrical Engineering

Thank you for your attention

